
Human-in-the-Loop Systems for Truthfulness:
A Study of Human and Machine Confidence

Yunke Qu
The University of Queensland

Brisbane, Australia
yunke.qu@uq.net.au

Kevin Roitero
University of Udine

Udine, Italy
roitero.kevin@spes.uniud.it

Stefano Mizzaro
University of Udine

Udine, Italy
mizzaro@uniud.it

Damiano Spina
RMIT University

Melbourne, Australia
damiano.spina@rmit.edu.au

Gianluca Demartini
The University of Queensland

Brisbane, Australia
demartini@acm.org

Abstract

Automatically detecting online misinforma-
tion at scale is a challenging and interdisci-
plinary problem. Deciding what is to be con-
sidered truthful information is sometimes con-
troversial and difficult also for educated ex-
perts. As the scale of the problem increases,
human-in-the-loop approaches to truthfulness
that combine both the scalability of machine
learning (ML) and the accuracy of human con-
tributions have been considered.

In this work we look at the potential to au-
tomatically combine machine-based systems
with human-based systems. The former ex-
ploit supervised ML approaches; the latter in-
volve either crowd workers (i.e., human non-
experts) or human experts. Since both ML
and crowdsourcing approaches can produce
a score indicating the level of confidence on
their truthfulness judgments (either algorith-
mic or self-reported, respectively), we address
the question of whether it is feasible to make
use of such confidence scores to effectively
and efficiently combine three approaches: (i)
machine-based methods; (ii) crowd workers,
and (iii) human experts. The three approaches
differ significantly as they range from avail-
able, cheap, fast, scalable, but less accurate
to scarce, expensive, slow, not scalable, but
highly accurate.

1 Introduction

The challenge of identifying online misinforma-
tion has been rapidly growing given the increase
in popularity of online news consumption as well
as the ability to profile and micro-target social me-
dia users. Fighting the spread of online misinfor-
mation is a multi-disciplinary issue which requires
both technical advances to process large amounts
of false digital information as well as to under-
stand the societal context in which such spreads
happen. In order to best deal with the need to

both scale to large number of fact-checks and have
expert journalists manually checking and evaluat-
ing the veracity of posted information, human-in-
the-loop systems have been considered (Demartini
et al., 2020; Allen et al., 2021; Nakov et al., 2021).

Human-in-the-loop information systems aim at
leveraging the ability of machines to scale and
deal with very large amounts of data while re-
lying on human intelligence to perform very
complex tasks—for example, natural language
understanding—or to incorporate fairness and/or
explainability properties into the hybrid system
(Demartini et al., 2017). Example of success-
ful human-in-the-loop methods include ZenCrowd
(Demartini et al., 2012), CrowdQ (Demartini et al.,
2013), CrowdDB (Franklin et al., 2011), and
Crowdmap (Sarasua et al., 2012). Active learn-
ing methods (Settles, 2009) are another example
where labels are collected from humans, fed back
to a supervised learning model, and then used to
decide which data items humans should label next.
Related to this is the idea of interactive machine
learning (ML) (Amershi et al., 2014) where labels
are automatically obtained from user interaction
behaviors (Joachims and Radlinski, 2007).

While being more powerful than pure machine-
based methods, human-in-the-loop systems need
to deal with additional challenges to perform ef-
fectively and to produce valid results. One such
challenge is the possible noise in the labels pro-
vided by non-expert humans. Depending on which
human participants are providing labels, the level
of data quality may vary. For example, making
use of crowdsourcing to collect human labels from
people online either using paid micro-task plat-
forms like Amazon MTurk (Gadiraju et al., 2015)
or by means of alternative incentives like, e.g.,
‘games with a purpose’ (Von Ahn, 2006) is in gen-
eral different from relying on a few experts.

There is often a trade-off between the cost and



the quality of the collected labels. On the one
hand, it may be possible to collect few high-
quality curated labels that have been generated
by domain experts, while, on the other hand, it
may be possible to collect very large amounts of
human-generated labels that might not be 100%
accurate. Since the number of available experts
is usually limited, to obtain both high volume and
quality labels, the development of effective quality
control mechanisms for crowdsourcing is needed.
Crowdsourcing as a method to collect labels to
train veracity classification systems has recently
been investigated (Roitero et al., 2020a,b; Soprano
et al., 2021; Roitero et al., 2021).

Rather than seeing these data collection ap-
proaches as mutually exclusive, in this paper we
focus on the possibility of combining machine-
based truthfulness classifiers, non-expert annota-
tors, and experts. In particular, we focus on the
notion of confidence, i.e., the estimate of the relia-
bility of the prediction—given by either a machine
or a human annotator.

More in detail, in this paper we focus on the
following research questions:

• RQ1: Can algorithmic and self-reported hu-
man confidence scores be used to reliably es-
timate the quality of truthfulness decisions?

• RQ2: Do humans and machines make simi-
lar or different mistakes in classifying truth-
fulness?

• RQ3: Can scarce expert annotator resources
be integrated in such human-in-the-loop
systems to intervene in cases when both
crowd workers and machine-based truthful-
ness classifiers fail to correctly label an item?

To the best of our knowledge, this is the first at-
tempt to understand the relationship between the
effectiveness and confidence of the set including
machine-based methods, crowd workers, and ex-
perts in a truthfulness classification task.

The rest of the paper is organized as follows.
Section 2 discusses the related work. Section 3
details the methodology used in our study. We
report and analyze our results in Section 4. Sec-
tion 5 concludes by summarizing our findings and
describing future work.

2 Related Work

In this section we summarize approaches comput-
ing and making use of confidence scores generated

by ML models or human annotators (either self-
reported or implicit).

Different types of ML methods are able to pro-
duce not only a classification decision, but to also
attach a score that indicates how confident the al-
gorithm is about the made decision. This is pos-
sible for a diverse set of methods, from decision
trees to deep learning.

Poggi et al. (2017) consider a complete
overview of 76 state-of-the-art confidence mea-
sures for ML; Mandelbaum and Weinshall (2017)
discuss distance based confidence scores in the
case of neural network based classifiers; Guo et al.
(2017) detail a methodology to correctly interpret
and compute confidence scores from ML models.

Trusting classification decisions solely based on
algorithmic confidence may be risky. Once manu-
ally labelled data has been collected, trained mod-
els may reflect existing bias in the data. An ex-
ample of such a problem is that of ‘unknown un-
knowns’ (UUs) (Attenberg et al., 2015), that is,
data points for which a supervised model makes
a high-confidence classification decision, which is
however wrong. This means that the model is not
aware of making mistakes. UUs are often difficult
to identify because of the high-confidence of the
model in its classification decision and may create
critical issues in ML.

Quantifying decision confidence can also be
done when decisions are made by human anno-
tators. Hertwig (2012) discuss the role of con-
fidence in the “wisdom of the crowd” paradigm.
They point out how human confidence may be
influenced by social interaction and the presence
of others’ annotations. Joglekar et al. (2013) de-
scribes methods to generate confidence intervals
in order to capture crowd workers’ confidence and
bound accuracy scores. Jarrett et al. (2015) con-
sider workers’ self-assessment and investigates
whether workers confidence correlates with qual-
ity and observe that self-evaluation is not indica-
tive of their actual performance. This is consistent
with findings by Gadiraju et al. (2017). Related to
this observation, Li and Varshney (2017) show that
workers annotation performance does not increase
when considering the confidence scores to weight
their contribution. Song et al. (2018) consider
worker confidence in the setting of a labeling task
performed with active learning techniques. Difal-
lah et al. (2016) look at how to schedule labeling
tasks to optimize their execution efficiency.



More than just human self-reported con�dence,
it is possible to implicitly measure con�dence by,
for example, computing inter-assessor agreement
metrics. Nowak and R̈uger (2010) study inter-
annotator agreement and show how annotation
quality can be improved when considering agree-
ment scores to aggregate labels. Aroyo and Welty
(2013) study the relationships between gold ques-
tions and workers agreement stating that agree-
ment metrics do not necessary correlate with qual-
ity but may uncover alternative views on possible
way to label data. Checco et al. (2017) discuss
agreement measures applied to crowdsourcing and
propose an alternative measure that is able to deal
with sparse and incomplete data. Maddalena et al.
(2017) incorporate assessor agreement into infor-
mation retrieval evaluation metrics. In our work
we make use of inter-annotator agreement metrics
as a measure of human annotator con�dence and
quality.

3 Methodology

3.1 Dataset

We make use of manual truthfulness labels ob-
tained from a crowdsourcing experiment as pre-
sented by Soprano et al. (2021). The crowdsourc-
ing task was performed as follows. After an ini-
tial background survey phase, crowd workers are
presented with 11 political statements, one after
the other; 6 statements are taken from PolitiFact
(Wang, 2017), 3 from ABC,1 and 2 are used as
quality checks. For each statement, according to
the design de�ned by Roitero et al. (2020a), work-
ers are asked to provide a truthfulness label. Addi-
tionally to the design by (Roitero et al., 2020a), we
ask workers to also provide a con�dence score on
the expressed truthfulness label on a Likert scale
in the [� 2; 2] range. The dataset contains a total
of 120 statements from PolitiFact: 10 for each of
the two political parties and for each level of the
six-level truthfulness scale used by the expert as-
sessors to evaluate the statements, and a total of 60
statements from ABC: 10 for each of the two po-
litical parties and for each level of the three-level
truthfulness scale used by the expert assessors to
evaluate the statements.

1https://apo.org.au/collection/302996/
rmit-abc-fact-check

3.2 Machine Learning for Truthfulness
Classi�cation

BERT (Bidirectional Encoder Representations
from Transformers) (Vaswani et al., 2017) is a
language representation model based on perform-
ing a bidirectional training of a transformer based
model. The core part of the model is the en-
coder / decoder architecture (Devlin et al., 2019),
which is formed by different steps: the tokeniza-
tion and numericalization of the input sequence
followed by a set of embedding layers, which learn
during the training phase a multidimensional em-
bedding for each input token. Then, the learned
representation is enriched with the context infor-
mation represented with the positional encoding
of the tokens built using the Multi Head (Self)
Attention mechanism, which is fundamental to
learn a better language model. In the BERT ar-
chitecture multiple encoder / decoder blocks are
stacked together to form the model. This ar-
chitecture allows BERT to encode the entire in-
put sequence at once, and perform two training
task simultaneously: Masked Language Model
and Next Sentence Prediction. The truthfulness
classi�cation task has been carried out using the
BERT model pre-trained for classi�cation tasks
(bert-base-uncased 2) �ne-tuned with ex-
pert truthfulness labels on political statements. We
use the output of the last softmax layer as the ML
classi�cation con�dence score we use in our anal-
ysis.

GloVe (Global Vectors for Word Representa-
tion) by (Pennington et al., 2014) is a word vector
learning technique which produces a vector space
model similar to word2vec. The fundamental idea
behind GloVe and word2vec is to learn, given a
large corpus, a set of tuples containing a word and
its context; then, the model is trained to predict the
context given the speci�c word. Unlike word2vec
which captures only the local context of a word,
GloVe considers also the global context, imple-
mented through a co-occurrence matrix. A feed-
forward architecture with two dense layers (6 and
1 node, respectively), and a soft-max layer at the
end. In Section 4 we only report results obtained
with BERT for space constraints but results ob-
tained with GloVe were similar.

2https://huggingface.co/
bert-base-uncased

https://apo.org.au/collection/302996/rmit-abc-fact-check
https://apo.org.au/collection/302996/rmit-abc-fact-check


3.3 Crowdsourcing for Truthfulness
Classi�cation

With the crowdsourcing task design presented in
Section 3.1, we collect non-expert labels from
Amazon MTurk for 180 statements across dif-
ferent ground-truth truthfulness levels and differ-
ent sources. In order to compare against super-
vised binary ML classi�ers, we binarize human
labels (originally collected on a 5-point[� 2; 2]
Likert scale) by consideringf� 2; � 1g as the
False Statements class andf 1; 2g as the
True Statements class. We also binarize the
6-level Politifact scale and the 3-level ABC scale
expert labels.

We use both crowd labels aggregated by the sum
of the scores given by the 10 different workers
who judged the same statement, as well as using
the raw labels and con�dence scores provided by
individual crowd workers. We remove both the 20
ABC labels with an in-between value and the 5
aggregated crowd labels with a 0 value, as they do
not indicate a binary classi�cation decision. We
are then left with 159 statements which we use in
our analysis.

Thus, we generated a dataset that contains, for
a total of 159 statements, truthfulness labels pro-
duced by ML models, non-expert crowd workers,
and experts (i.e., ground truth labels) together with
the respective con�dence scores (experts are as-
sumed to have max con�dence).

3.4 ML and Crowd Con�dence

To compute the crowd and machine learning con-
�dence, we proceed as follows. For crowdsourced
labels, we consider both the con�dence scores
self-reported by individual crowd workers, as well
as the standard deviation among the ten crowd la-
bels collected for each document. We refer these
two scores respectively asexplicit and implicit
con�dence scores.

Concerning the machine learning approaches,
we cannot directly use the scores returned by the
model in their last soft-max layer. Such scores
can not be treated as con�dence scores as shown
in previous studies (Guo et al., 2017). Thus, to
compute the machine learning con�dence scores,
we employed the bootstrap technique (Efron and
Tibshirani, 1985): starting from a speci�c ma-
chine learning model, we produced ten different
variations of such model obtained by varying the
random seeds used in the initialization procedure;

then, we run the ten models on the dataset and,
similarly to what we do for crowdsourced labels,
we compute the standard deviation over the ten
scores collected for each document.

4 Results

4.1 ML and Crowd Accuracy

First we report on the truthfulness classi�cation
accuracy of both ML and crowd-based methods to
label the truthfulness of statements in the dataset.
As compared to expert ground-truth labels, ML
models and crowd workers (with truthfulness la-
bels for a statement aggregated by means of sum
as raw labels are in[� 2; 2]) perform at a similar
level of accuracy (GloVe: 64.5%; BERT: 63.52%;
word2vec: 62.9%; crowd: 55.3%). Thus, in the
following we only report the results obtained on
the most effective ML model.

Next, we explore the opportunity of combin-
ing these approaches for truthfulness classi�cation
by leveraging con�dence-based combinations as
well as involving scarce expert annotator resources
when most bene�cial.

4.2 ML and Crowd Con�dence

Figure 1 shows both the ML (i.e., GloVe) and
crowd con�dence for the non-aggregated labels
with a breakdown on the correctly and not cor-
rectly classi�ed statements. Note that the ML and
crowd con�dence scores are shown in two sepa-
rate plots since they are on two separate and not
comparable scales: ML con�dence scores are ob-
tained from the bootstrap techniques applied to the
soft-max layer of the ML algorithm which returns
values in the[0:5; 1] range, while the crowd con�-
dence score is self-reported by each crowd worker
on a [-2,2] scale. As we can see from Figure 1,
ML con�dence scores are almost always slightly
lower on average for statements in which ML de-
cisions are wrong and higher when ML correctly
classify them (i.e., easy statements), even if such
differences are small and not statistically signif-
icant. We see that crowd con�dence shows the
same behavior. Thus, answeringRQ1, it seems
raw con�dence scores may be a weak signal indi-
cating accurate classi�cation decisions, thus lead-
ing to risks of undetectable classi�cation errors
(i.e., unknown unknowns) especially for the case
of non-expert human annotators.

We now look at the con�dence scores for the
aggregated crowd labels; these con�dence scores



Figure 1: ML and explicit crowd con�dence scores for raw crowd labels over correct and incorrect truthfulness
classi�cations.

Figure 2: ML (left) and crowd con�dence; both explicit (center plot) and implicit (right plot) for aggregated labels
over ground-truth classes.

are obtained by taking the average value for each
statement over all the workers who assessed it.
Figure 2 shows, similarly to Figure 1 but with a
breakdown on statement truthfulness rather than
the correctness of its classi�cation, the con�dence
for both ML and crowd truthfulness classi�cation
decisions.

As we can see from the plots, the mean con-
�dence score for the `true' statements is higher
(although not signi�cantly different according to a
Mann-Whitney test) than the con�dence score on
the `false' statements for con�dence scores; on the
contrary, for ML con�dence scores the aggregated
con�dence scores are slightly higher (although not
signi�cantly different either) for the `false' state-
ments. This indicates that, similarly to what was
observed for Figure 1, it seems that aggregated
con�dence scores are a weak signal indicating ac-
curate classi�cation decisions, and it should not be
used as it may lead to undetectable classi�cation
errors.

We now move to study the relationship between
ML and aggregated crowd con�dence scores, to
see if they are correlated and if one con�dence

score can act as a proxy for the other. Figure 3
shows on the x-axis the aggregated crowd con�-
dence scores, on the y-axis the ML con�dence;
each dot is a statement; the different colors in the
plot highlight a breakdown on either correctly and
incorrectly classi�ed statements by both the ML
and the crowd. As we can see by inspecting the
plots as a whole, both implicit and explicit crowd
con�dence show the same behavior when com-
pared to ML con�dence. Moreover, as we can see
from inspecting the plots individually, the con�-
dence scores for the statements correctly classi�ed
by both human and machine methods are spread
across the plot; this is a further con�rmation that
trusting both ML and crowd con�dence scores can
lead to classi�cation errors. If we now focus on
the top-right and bottom-left part of the plots, we
see that it contains dots of different colors; this in-
dicates that even when both methods have either
a high (top-right) or low (bottom-left) con�dence
scores the accuracy is similar. Again, this is a fur-
ther con�rmation of phenomena observed so far
which indicates that both ML and crowd con�-
dence scores should not be trusted.



Figure 3: ML versus explicit (left plot) and implicit (right plot) crowd con�dence with a breakdown on classi�ca-
tion errors.

Summarizing the results observed so far, we
can conclude that both ML and crowd con�-
dence scores should be inspected carefully and
not blindly trusted, as they can lead to classi�-
cation errors. Furthermore, we observed a pecu-
liar but interesting behavior for crowd con�dence
scores; both explicit (i.e., the scores submitted by
the workers) and implicit (i.e., the ones automat-
ically derived by considering the standard devi-
ation of the truthfulness labels as submitted by
the workers) con�dence scores show a very sim-
ilar behavior when compared to ML con�dence
scores; thus, this set of preliminary results hints
that implicit con�dence scores can act as a proxy
for explicit scores if the aim is to compare them
with ML scores. Thus, researchers and practition-
ers can avoid asking for explicit con�dence scores
if their focus is on accuracy and comparison with
ML con�dence scores, reducing the effort required
by the crowd workers when performing the task.

To verify if this conjecture holds in general,
we compared the explicit and implicit crowd con-
�dence scores. Similarly to Figure 3, Figure 4
shows on the x-axis the aggregated crowd implicit
con�dence scores, and on the y-axis the aggre-
gated crowd explicit con�dence scores; each dot
is a statement; the different colors in the plot high-
light a breakdown on either correctly and incor-
rectly classi�ed statements. As we can see from
the plot, while implicit and explicit crowd con�-
dence scores show a very similar behavior when
compared to ML con�dence (see Figure 3), we
can see that the two measures are not correlated,

Figure 4: explicit versus implicit crowd con�dence
with a breakdown on classi�cation errors.

and each statement shows a different implicit and
explicit scores. Thus, if the focus of research and
practitioners is purely on crowd con�dence scores,
implicit and explicit ones are substantially differ-
ent. In the following we will focus on the rela-
tionship between effectiveness and con�dence of
the models, to investigate which crowd con�dence
scores provide a more informative signal when re-
lated to effectiveness.

We now turn to investigate whether the con�-
dence and effectiveness of the methods used to
predict the truthfulness of the statements are re-
lated. To this aim, we break down the con�dence
scores into quartiles and for each quartile we plot
the accuracy of the considered method. Figure 5


